Aging scaled Brownian motion.
نویسندگان
چکیده
Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.
منابع مشابه
Heavy Traffic Limits via Brownian Embeddings
For the GI0GI01 queue we show that the scaled queue size converges to reflected Brownian motion in a critical queue and converges to reflected Brownian motion with drift for a sequence of subcritical queuing models that approach a critical model+ Instead of invoking the topological argument of the usual continuousmapping approach, we give a probabilistic argument using Skorokhod embeddings in B...
متن کاملConvergence of Scaled Renewal Processes to Fractional Brownian Motion
The superposition process of independent counting renewal processes associated with a heavy-tailed interarrival time distribution is shown to converge weakly after rescaling in time and space to fractional Brownian motion, as the number of renewal processes tends to innnity. Corresponding results for continuous arrival uid processes are discussed.
متن کاملBranching Brownian Motion: Almost Sure Growth Along Scaled Paths
We give a proof of a result on the growth of the number of particles along chosen paths in a branching Brownian motion. The work follows the approach of classical large deviations results, in which paths in C[0, 1] are rescaled onto C[0, T ] for large T . The methods used are probabilistic and take advantage of modern spine techniques.
متن کاملExistence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
Central Limit Theorem Forthe
The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. We prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by Westwater (1984). The scaled variance is characterized in terms of the largest eigenvalue of a one-parameter family of diierential operators, introduced and analyze...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 91 4 شماره
صفحات -
تاریخ انتشار 2015